1. {3 marks} Can a simple graph have 5 vertices and 12 edges? If so, draw it; if not, explain why it is not possible to have such a graph.

ANSWER:

In a simple graph, no pair of vertices can have more than one edge between them. In other words, there are no parallel edges.

For a simple graph, the “densest” graph we can get is one in which every vertex is connected to every other vertex. This is called a complete graph. The maximum number of edges in the complete graph containing 5 vertices is given by K_5: which is $C(5, 2)$ edges = “5 choose 2” edges = 10 edges. Since 12 > 10, it is not possible to have a simple graph with more than 10 edges.

2. {6 marks} Suppose that in a group of 5 people: A, B, C, D, and E, the following pairs of people are acquainted with each other.

- A and C
- A and D
- B and C
- C and D
- C and E

a) Draw a graph G to represent this situation.
b) List the vertex set, and the edge set, using set notation. In other words, show sets V and E for the vertices and edges, respectively, in $G = \{V, E\}$.
c) Draw an adjacency matrix for G.

ANSWER:

a) One such graph for G is:

```
   A
 / \
B - C
   D
    E
```
b) For sets V and E, any order to the elements is fine. Furthermore, in edge set E, you can specify (A, C) or (C, A); they mean the same thing.

\[V = \{A, B, C, D, E\} \]
\[E = \{(A, C), (A, D), (B, C), (C, D), (C, E)\} \]

c) Adjacency matrix (0 = no edge; 1 = edge):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3. {3 marks} How many more edges are there in the complete graph \(K_7 \) than in the complete graph \(K_5 \)?

ANSWER:

\[C(7, 2) - C(5, 2) = 21 - 10 = 11 \]

4. {4 marks} Given a graph for a tree (with no designated root), briefly describe how a root can be chosen so that the tree has maximum height. Similarly, describe how a root can be chosen so that the tree has minimum height. (Note that path length is described as the number of edges that need to be traversed between two vertices.)

ANSWER:

For the maximum height, choose either end of the longest path as the root. For the minimum height, choose the vertex at the half-way point of the path.

5. {6 marks} Perform a breadth-first search of the following graph, where E is the starting node. In other words, show the output if we issue the call \(\text{BFS}(E) \). Provide two cases: (a) Use a counterclockwise ordering from the top (12 o’clock position); and (b) Use a clockwise ordering from the top.
ANSWER:

(a) When we visit adjacent nodes in a counterclockwise order from the top, the order in which we visit the nodes is:

 E, D, F, C, G, B, A

(b) When we visit adjacent nodes in a clockwise order from the top, the order in which we visit the nodes is:

 E, F, D, G, C, B, A

6. {6 marks} Perform a depth-first search of the same graph as in Question 5, but use D as the starting node. In other words, show the output if we issue the call \(\text{DFS}(D) \). Provide two cases: (a) Use a counterclockwise ordering from the top (12 o’clock position); and (b) Use a clockwise ordering from the top.

ANSWER:

(a) When we visit adjacent nodes in a counterclockwise order from the top, the order in which we visit the nodes is:

 D, E, F, C, B, A, G

(b) When we visit adjacent nodes in a clockwise order from the top, the order in which we visit the nodes is:

 D, G, C, B, A, E, F